Covers for self-dual supercuspidal representations of the Siegel Levi subgroup of classical p-adic groups
نویسندگان
چکیده
We study components of the Bernstein decomposition of a p-adic classical group (with p odd) with inertial support a self-dual positive level supercuspidal representation of a Siegel Levi subgroup. More precisely, we use the method of covers to construct a Bushnell-Kutzko type for such a component. A detailed knowledge of the Hecke algebra of the type should have number-theoretic implications.
منابع مشابه
Some bounds on unitary duals of classical groups - non-archimeden case
We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups. Roughly, they can show up only if the central character of the inducing irreducible cuspidal representation is dominated by the square root of the modular character of the minimal parabolic subgroup. For unitarizable subquotients...
متن کاملSOME RESULTS ON THE ADMISSIBLE REPRESENTATIONS OF NON-CONNECTED REDUCTIVE p-ADIC GROUPS
We examine the theory of induced representations for non-connected reductive p-adic groups for which G/G is abelian. We first examine the structure of those representations of the form IndGP 0(σ), where P 0 is a parabolic subgroup of G and σ is a discrete series representation of the Levi component of P . Here we develop a theory of R–groups, extending the theory in the connected case. We then ...
متن کاملar X iv : 0 81 2 . 38 70 v 1 [ m at h . R T ] 1 9 D ec 2 00 8 DEPTH ZERO REPRESENTATIONS OF NONLINEAR COVERS OF p - ADIC GROUPS
We generalize the methods of Moy-Prasad, in order to define and study the genuine depth zero representations of some nonlinear covers of reductive groups over p-adic local fields. In particular, we construct all depth zero supercuspidal representations of the metaplectic group Mp2n over a p-adic field of odd residue characteristic.
متن کاملGlobally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change, I : Iwasawa algebras and a base change map
This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2, mathbb{Z}_p)$. It then describes a natural base change map between the Iwasawa algebras or more correctly, as it turns out, between the global distribut...
متن کاملON SQUARE-INTEGRABLE REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS II
In this paper, we continue our study of non-supercuspidal discrete series for the classical groups Sp(2n, F ), SO(2n+ 1, F ), where F is p-adic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007